Муниципаль	ное бюджетное	общеобра	азовательн	ое учрежден	ие
«Лицей сов	ременных техно	ологий уп	равления У	№ 2» г. Пенз	Ы

Аппаратный комплекс-тренажер «Braile Trainer» для самостоятельного изучения шрифта Брайля

Автор:

ученик 10 «В» класса, Елисеев Кирилл Алексеевич

Руководители:

учитель информатики высшей категории, Адамский Сергей Сергеевич; учитель информатики первой категории, Голикова Ирина Александровна.

Оглавление

Введение	3
1.Теоретическая часть	4
1.1 Что такое азбука Брайля?	4
1.2. Обучения слепых детей чтению и письму с использованием шрифта Брайля	5
2. Практическая часть	6
2.1. Разработка функционала устройства	6
2.2. Сборка устройства	7
2.3. Разработка программного обеспечения	7
2.4. Создание корпуса устройства	8
2.5 Себестоимость	9
2.6. Апробация тренажера	9
Заключение	11
Список использованной литературы	11

Введение

В современном мире в разных сферах общества активно ведётся процесс информатизации. В медицине, образовании, финансовом секторе и других областях сегодня просто невозможно представить взаимодействие между людьми без информационных технологий. Особенно активно сегодня информатизация происходит в сфере образования — электронные учебники, тренажёры и модели — всё это стало неотъемлемой часть образовательного процесса.

Особое внимание сейчас в образовании отводится детям с ограниченными возможностями здоровья, так же и их учителям оказывается значимая материальная поддержка государства. От того, насколько грамотным и актуальным будет обучение детей с особыми потребностями зависит их будущее, особенно скорость их адаптации к окружающему социуму. Чем современнее учебное оборудование, тем эффективнее происходит обучение.

Но не только государство заботится о людях с особенностями здоровья, но и ряд предпринимателей. Специальное оборудование крайне дорогое и специфичное. Потребность в особенных устройствах всегда высока ввиду их дороговизны и нераспространённости. Предприниматели это знают и предлагают свои услуги по высоким ценам ввиду инклюзивности вопроса. Например, говорящий самоучитель брайлевского шрифта «Умка-01» стоит 8000 Р, а самоучитель «Брайльбука» хоть и стоит дешевле (3090 Р), но обладает ограниченным функционалом. Возможно, самостоятельная сборка подобного устройства из доступных электронных компонентов имеет значительно меньшую себестоимость, чем у продуктов на рынке. Данное предположение стало предпосылкой к созданию проекта.

Цель проекта: разработка тренажера «Braile Trainer» индивидуального использования для организации индивидуального процесса обучения слабовидящих детей шрифту Брайля.

Задачи:

- •Проанализировать современные способы и методы обучения шрифту Брайля в специализированных образовательных учреждениях.
- •Проанализировать рынок устройств для изучения шрифта Брайля для слабовидящих детей и выяснить актуальность проекта.
 - •Подобрать необходимые материалы и комплектующие для создания тренажера.
 - •Спроектировать устройство на основе микроконтроллера Arduino Nano.
 - Озвучить набор букв для воспроизведения азбуки.
 - Разработать программное обеспечение для устройства.
 - Разработать и изготовить подходящий корпус для устройства.
 - Апробировать разработку.
 - •Получить обратную связь.

Обучение чтению и письму по системе Брайля – достаточно сложный процесс. На данный момент в МБОУ СОШ №27 г. Пензы обучаются несколько слабовидящих детей, которые осваивают грамоту на основе шрифта Брайля. В ходе анализа средств обучения, используемых образовательным учреждением, было выявлено, что аппаратные тренажеры шрифта Брайля не используются ввиду их отсутствия. Дети имеют возможность изучать специальный шрифт только в школе с помощью учителя, либо в домашних условиях с родителями. Предлагаемая разработка позволит производить самостоятельное обучение, в том числе и дома.

1.Теоретическая часть

1.1 Что такое азбука Брайля?

Одно из важнейших достижений человечества для незрячих людей – тактильный шрифт по системе Брайля, благодаря которому они могут прочитать и написать любой текст. Рельефные тактильные сочетания шести точек позволяют передать все буквы и цифры и даже музыкальные, математические и научные символы. При помощи шрифта Брайля слепые и слабовидящие люди могут читать те же книги и периодические издания, которые печатаются визуальным шрифтом. Шрифт Брайля дает им возможность получать и передавать информацию и, таким образом, обеспечивает их трудоспособность, независимость и равноправное положение в обществе.

Данный шрифт (рис. 1) был придуман в 1824 году пятнадцатилетним французским подростком Луи Брайлем. Сын сапожника, в трехлетнем возрасте он повредил глаз ножом отца и потерял зрение. Свой рельефно-точечный шрифт подросток создал в 1824 году на основе так называемого «ночного шрифта», которым в то время пользовались военные для передачи донесений в темноте. В основе шрифта положены комбинации из точек. Для изображения букв в шрифте Брайля используются шесть точек, расположенных в два столбца, по три в каждом. Существует также восьмиточечная система Брайля, в которой содержатся еще две точки. Шеститочечная система позволяет закодировать 2^6 =64 символа (63 информативных + пробел), восьмиточечная система — 2^8 =256 символов (255 информативных + пробел).

У Брайля для обозначения первых букв алфавита служат верхние и средние точки шеститочия. Для обозначения последующих букв добавляется нижняя точка слева, потом слева и справа, затем справа. Различные комбинации шеститочия дают возможность обозначать также цифры, знаки препинания, математические, химические и нотные знаки.

Одной из особенностей шрифта Брайля является то, что процесс чтения осуществляется по выпуклым точкам, поэтому прокалывать их надо с обратной стороны листа (справа налево), а уже чтение происходит стандартно — слева направо. При чтении точки нумеруются по столбцам сверху вниз. Соответственно при записи они идут в обратном порядке.

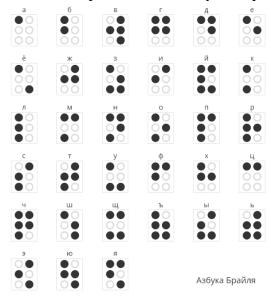


Рис. 1

Цифры в шрифте Брайля по начертанию совпадают с первыми буквами английского алфавита: 1=a, 2=b, 3=c и т. д. Перед написанием цифр необходимо поставить специальный символ-модификатор, обозначающий «числовой режим символов».

При конструировании своей системы точечных букв Брайль предложил такой размер знаков, который даёт возможность покрыть букву целиком кончиком читающего пальца, с таким расстоянием между точками, которое позволяло бы, при необходимости, разбирать отдельные точки. Знак, изображенный комбинацией рельефных точек высотой 0,6 миллиметра, диаметром — 1,4 миллиметра записывается в ячейке размером 4,2 миллиметра на 7 миллиметров. Написанный таким образом текст при определённом навыке легко распознается на ощупь. Он читается с помощью указательного пальца одной или обеих рук. Лёгкость чтения знаков и их компактность позволяют незрячему читателю достаточно быстро читать текст. На основе шрифта Брайля можно достичь скорости чтения 150 слов в минуту, что составляет примерно половину быстроты чтения зрячих.

В настоящее время система Брайля приспособлена для разных языков, даже китайского. Обладая навыком чтения по Брайлю, незрячий человек во многом упрощает себе жизнь: зная шрифт, он может прочитать произведения великих писателей, пользоваться интернетом с помощью «брайлевского дисплея», а также облегчает себе ориентирование в пространстве благодаря тактильным табличкам. [3]

1.2. Обучения слепых детей чтению и письму с использованием шрифта Брайля

Задачи начального курса обучения грамоте слепого ребёнка состоят в том, чтобы научить детей сознательно читать, грамотно писать, правильно и последовательно излагать свои мысли. Для успешного овладения системой Брайля необходимо, чтобы у ребёнка была достаточно развита тактильная чувствительность.

Развивать тактильную чувствительность пальцев необходимо на уроках коррекции мелкой моторики. Это всем известная и очень эффективная работа с крупами разной формы и размера (сортировка круп). Работа с мозаикой, конструктором, бумагой, фольгой, нитками, пластилином, глиной.

Обучение точечному шрифту начинается с показа правильной посадки за столом, положения головы, тела и движения рук. Далее необходимо познакомить детей с письменным прибором Брайля, грифелем, бумагой для точечного письма, научить правильно держать грифель (грифель нужно держать перпендикулярно к прибору).

Для обучения шрифту Брайля тифлопедагоги используют специальные средства обучения (рис. 2). Например, кубик-букву, который предназначен для обучения незрячих людей системе Брайля. С помощью трёх подвижных элементов, на которых размещены рельефные точки, можно составить букву или знак по системе Брайля.

Рис. 2

Также в процессе обучения используется разборная азбука-колодка, которая выглядит как простая пластмассовая панель с проделанными в ней отверстиями, в которые необходимо вставлять выпуклые штифты. Процесс составления букв, цифр и слов на этом устройстве подразумевает набор их из небольших выпуклых штифтов на панели в соответствии с расположением их по системе Брайля. Во время чтения незрячий человек нащупывает их подушечками пальцев, за счет чего осуществляется восприятие и понимание набранного текста.

Постепенно дети овладевают процессом письма по системе Брайля. Ориентировка по строчке и клетке облегчается продвижением по строке пальцев левой руки перед грифелем, который держится правой рукой. Пальцы левой руки контролируют движение грифеля внутри клетки и указывают на направление вдоль строки. В письме принимают участие обе руки. Указательный палец левой руки помогает ориентироваться в клетке и находить соседнюю клетку. При выдавливании иголкой точек в буквах нужно соблюдать определённую последовательность (движение по часовой стрелке внутри клетки, начиная с первой верхней точки).

Чтение по Брайлю проводится двумя руками. Важно требовать правильных приёмов при чтении. Двурукое чтение с использованием всех пальцев, расширяет поле восприятия, делает чтение непрерывным. Пальцы рук двигаются по строке слева направо. Недопустима вибрация рук и движение пальцев по буквам сверху вниз. Руки ребёнка должны двигаться спокойно, без нажима на точки. Прикосновение кончиков пальцев к букве должно быть полным, достаточным по продолжительности. [4]

2. Практическая часть

2.1. Разработка функционала устройства

Перед началом разработки устройства была изучена работа педагогов со слабовидящими детьми в МБОУ СОШ №27 г. Пензы. Были посещены учебные занятия детей с особенностями зрения, рассмотрен учебный инвентарь и другие средства обучения. При общении с самими детьми были выявлены их затруднения в освоении шрифта Брайля и прочие особенности обучения «из первых уст». Были выслушаны пожелания от педагогов школы относительно функций будущего тренажера.

В результате посещения образовательного учреждения, был сформирован список необходимых функций и было получено представление о системе работы с особенными детьми. Было решено создать устройство, которое не только помогало бы обучению чтения шрифта Брайля, но и имело бы возможность переключения на зеркальные знаки, используемые при письме. Помимо тренировки запоминания представления символов букв, была запланирована и реализация работы с символами цифр.

Для реализации всех функций устройство должно содержать следующие элементы на корпусе:

- Шесть кнопок для ввода шеститочия (шесть точек шрифта Брайля).
- Кнопка для звуковой проверки введенного символа.
- Кнопка переключения режима чтения и письма.
- Кнопка для переключения между режимами ввода цифр и букв.
- Выключатель устройства.

Для того, чтобы пользователь устройства тактильно определял, что кнопка, выполняющая роль точки в шрифте находится в нажатом или отжатом состоянии использованы кнопки с

видимой фиксацией. Каждая из шести кнопок в отжатом состоянии означает одну точку в шрифте. Таким образом, неактивные кнопки располагаются вровень с корпусом устройства, а активные слегка выпирают, имитируя точки шрифта Брайля.

2.2. Сборка устройства

Тренажёр было решено собрать на базе микроконтроллера Arduino nano. Данная платформа обладает рядом преимуществ:

- Низкая стоимость (Китайский аналог платы Arduino можно приобрести в розничных магазинах РФ от 300 рублей, а на заказ от 170 рублей).
- Простота использования (понятная среда программирования, открытый код, большое комьюнити и его активная поддержка).
- Большое разнообразие подключаемых модулей и датчиков.
- Доступность необходимых компонентов.

Именно плата Arduino nano была выбрана из-за ее размеров (42x19 мм) и достаточной для поставленных задач вычислительной мошности.

Для сборки потребовались следующие компоненты:

- Плата Arduino nano.
- Модуль mp3-tf-16p для воспроизведения mp3 файлов.
- Динамик мощностью 2 Вт, 8 Ом.
- 9 кнопок.
- Выключатель.
- Соединительные провода.
- Набор для пайки (паяльник, олово, флюс).
- Макетная плата.
- Батарейка типа «крона» на 9 вольт.

Схему устройства спроектирована при помощи среды для создания электронных схем EasyEDA. Эта платформа позволяет автоматизировать процесс изготовления печатных плат, визуализировать схему устройства, удобно развести провода, включает в себя большое количество электронных модулей и компонентов.

Предварительная сборка тренажера осуществлялась на беспаечной макетной плате. Плата позволяет легко изменять и дорабатывать схему. После написания программного обеспечения и проверки работоспособности, собранная установка была перенесена на плату для пайки.

2.3. Разработка программного обеспечения

Скетч для тренажера написан на языке С. Использованы библиотеки «DFPlayerMini_Fast» и «SoftwareSerial». Первая позволяет работать с цифровым модулем «mp3-tf-16p», а вторая позволяет реализовать последовательный интерфейс на любых цифровых выводах Arduino.

Для создания программного обеспечения также потребовались файлы «.mp3», содержащие озвученные буквы и названия режимов работы. Эти файлы были созданы при помощи онлайн синтезатора речи на основе искусственного интеллекта voicebot.su.

При написании скетча используется оператор условия «if». Проверяется нажатие клавиш, и если нажата определенная комбинация кнопок, то выполняется команда воспроизведения соответствующего звукового файла. Если набранная комбинация кнопок не соответствует ни одному символу в шрифте Брайля, то издается звуковой сигнал ошибки.

Ознакомиться с созданным скетчем первой версии можно по следующей ссылке: https://vk.cc/ckqq93.

2.4. Создание корпуса устройства

Последним этапом в создании устройства тренажера шрифта Брайля стало изготовление тестового (чернового) корпуса. К нему было предьявлено несколько требований. Он должен был быть достаточно вместительным, строгим и практичным, иметь отверстия для динамика, иметь крышку для удобной замены батарейки и, самое главное, кнопки в нажатом состоянии должны быть вровень с самим корпусом.

Модель устройства создавалась в онлайн редакторе для 3D моделирования «Tinkercad» (рис. 3). А затем корпус был напечатан в «Кванториуме» МБОУ ЛСТУ №2 г. Пензы, на 3D принтере Zenit (рис. 4). Модель разделена на несколько частей: передняя панель, задняя крышка, отсек для батарейки и 9 кнопок. Высота кнопок была подобрана путём нескольких итераций печати с разными параметрами высоты детали. Для печати этих деталей потребовался один рабочий день несколько дней и примерно 3 метра пластика PLA.

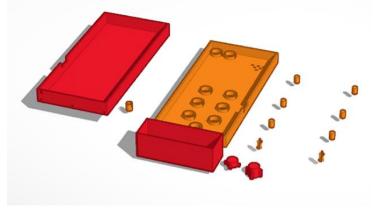


Рис. 3

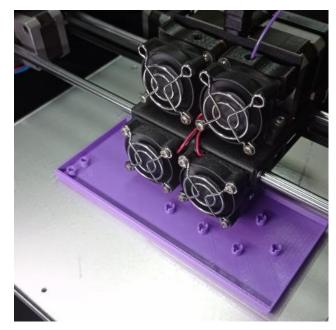


Рис. 4

2.5 Себестоимость

Примерные затраты на один экземпляр аппаратного тренажера «Braile Trainer» представлены в таблицах ниже.

Денежные затраты:

Комплектующие	Стоимость, руб.
Плата Arduino nano	175
Макетная плата для пайки	50
MP3-TF-16P	83
Динамик 8 Ом 2 Вт	46
Кнопки тактильные с фиксацией 9 шт.	108
Кнопка-переключатель	24
Пластик для печати на 3D принтере	300
SD карта	179
Bcero	965

Большинство комплектующих было приобретено в зарубежном розничном интернетмагазине. Если покупать похожие комплектующие в РФ, то они будут стоить значительно дороже. Если же организовывать серийное производство и сделать оптовую закупку комплектующих, то их стоимость существенно уменьшится.

Временные затраты:

Вид деятельности	Время, ч
Сборка	2
Запись аудио озвучки азбуки	2
Пайка и отладка	5
Написание скетча	9
Изготовление корпуса	10
Всего	28

Просчет себестоимости изготовленного устройства доказывает завышенную стоимость аналогичных приборов, имеющих меньший набор функций.

2.6. Апробация тренажера

После того как тестовый образец тренажера был создан, состоялось повторное посещение МБОУ СОШ №27 г. Пензы, где обучаются дети с нарушением зрения. Состоялась встреча с обучающимся второго класса. Ребенок с удовольствием проверял свои знания уже известных ему комбинаций точек в шрифте и с неподдельной радостью слушал звуковое воспроизведение введенных им символов. Обучающийся попробовал всевозможные режимы работы с тренажером: ввод букв, цифр, использовал тренажер в режиме письма и в режиме чтения. До этого с подобным устройством ему не приходилось работать. Мальчик при использовании воспринимал тренажер как развивающую игрушку, то есть обучение шрифту Брайля с помощью аппаратного комплекса получилось в игровой форме (рис. 5).

Рис. 5

Рис. 6

Педагоги, работающие с особенными детьми в этой школе, также оценили разработку, отметив, что выучить шрифт Брайля с помощью этого тренажера будет проще и быстрее (рис. 6). Причем ребенок сможет выучить нужные комбинации самостоятельно без помощи взрослых.

Педагоги предложили использовать тренажёр своим коллегам, которым предстоит работать со слабовидящими детьми в основной школе. В настоящее время в условиях инклюзивного обучения дети с нарушениями зрения имеют право обучаться в любой общеобразовательной школе. И школа обязана создать условия для обучения детей с особенностями здоровья. Педагоги вынуждены обучаться новым методикам и приобретать нужные знания для работы в том числе и со слабовидящими детьми.

Заключение

В век цифровых технологий, когда компьютерной грамотности придается все большее значение, чтение и письмо по системе Брайля остается для слепого ребенка обязательным и необходимым условием для его качественного обучения, развития и социализации.

В результате выполнения проекта был спроектирован и реализован аппаратный тренажер «Braile Trainer», позволяющий облегчить процесс обучения слепых детей, сделать его самостоятельным, добавить в него игровой компонент. Для выполнения поставленной цели были решены все необходимые задачи. В том числе осуществлена апробация изготовленного продукта в одной из общеобразовательных школ, где обучаются дети с нарушениями зрения. Первое использование показало, что данный тренажер можно применять для обучения или самостоятельного изучения шрифта Брайля слепыми детьми младших классов. Так как в настоящее время такие дети могут обучаться и в обычных школах в условиях инклюзии, многим педагогам самим может потребоваться обучение шрифту Брайля. Тренажер может помочь работникам сферы образования, работающим с детьми с нарушениями зрения.

В будущем работа над этим проектом будет продолжена. В перспективе станет возможным добавление в устройство распознавание символов иностранных языков, так как слабовидящие дети так же, как и здоровые в школе изучают иностранные языки. Для детей, обучающихся в музыкальных школах можно добавить возможность изучения нот.

Мы вместе входим в новый век, когда люди с ограниченными возможностями здоровья становятся полноценными участниками общества. Но, без специальных гаджетов, таких как данный проект, адаптироваться будет непросто.

Список использованной литературы

- 1. Леушева М. Г., Денискина, В.З., Методика ускоренного запоминания основных знаков (букв, цифр, знаков препинания) рельефно-точечной системы Брайля. М.: ИПТК «Логос» ВОС, 2006.
- 2. Обучение письму и чтению по системе Брайля /под ред. Г. В. Никулиной. СПб.: КАРО, 2006.
- 3. Точечный шрифт // Орфографика URL: https:/opфографика.pф/raznoe/tochechnyj-shrift-tochechnyj-shrift-skachat.html (дата обращения: 23.12.22).
- 4. Особенности обучения грамоте слепых детей в школе первой ступени // сайт Верхнепышминской школы-интерната им. С. А. Мартиросяна URL: http://mart-school.ru/osobennosti-obucheniya-gramote-slepyh-detej-v-shkole-pervoj-stupeni (дата обращения: 25.12.22).

Приложение 1. Устройство в разборе и сборе

Рецензия

на работу К. А. Елисеева

«Аппаратный комплекс-тренажер «Braile Trainer» для самостоятельного изучения шрифта Брайля»

Настоящая работа посвящена реализации DIY-устройства в рамках реализации инклюзивного образовательного процесса.

В основе работы лежит принцип создания обучающих аппаратных тренажёров, позволяющих мгновенно получить обратную связь от устройства при проверке каких-либо действий со стороны пользователя устройства.

Разработанный продукт имеет ряд отличительных особенностей от существующих аналогов. Реализованы режимы проверки знаний шрифта Брайля в формате записи, что не представлено в подобных устройствах на рынке. Прекрасными дополнениями являются проверка написания цифр. Устройство полностью автономно и не требует какой-либо настройки. Имеет понятный интерфейс и работает от одной батарейки типа «Крона».

В результате разработки получен продукт, рекомендуемый для использования в общеобразовательных организациях, реализующих инклюзивное обучение детей с нарушениями зрения. Доступно и персональное использование в домашних условиях. Устройство озвучивает все действия пользователя, что облегчает эксплуатацию для слабовидящих людей.

Автором были изучены и проанализированы аналоги. На основе анализа и изучения потребностей в обучении слабовидящих детей был произведёт синтез требований к новой разработке. В работе предоставлены ссылки на исходный код проекта. В ходе разработки было использованы периферийные устройства, совместимыми с платформой «Ардуино». Корпус продукта был изготовлен самостоятельно на 3д-принтере. Всё это говорит о высоких навыках проектирования и профессионализме разработчика.

Подводя итог, следует отметить большой вклад автора, поскольку разработана не просто концепция устройства, а реализован готовый рабочий прототип тренажёра, который был апробирован в реальных условиях на базе МБОУ СОШ №27 г. Пензы.

Работа (проект) заслуживает внимания и высокой оценки, поскольку несёт высокую практическую значимость и выполнен на достойном уровне.

А. А. Долов, директор МБОУ СОШ №30 г. Пензы,

кандидат технический наук.

12.01.2023