ГБУДОПО «Центр развития творчества детей и юношества»	
Модель автономного роботизированного многофункционального	
модульного транспортного средства,	
для изучения и обслуживания водоемов малой глубины	
для изучения и обслуживания водоемов малой глубины на основе робототехнического комплекта Lego Mindstorms EV3	

ОГЛАВЛЕНИЕ

введение	
НАЗНАЧЕНИЕ УСТРОЙСТВА	5
СОСТАВ УСТРОЙСТВА	5
ОПИСАНИЕ УСТРОЙСТВА	6
ИСПЫТАНИЯ	15
ЗАКЛЮЧЕНИЕ	16
ΠΜΤΕΡΑΤΌΡΑ	16

ВВЕДЕНИЕ

Сохранение водных объектов страны является одной из важных задач и условием устойчивого развития нашего государства.

В стране создана система государственного мониторинга за состоянием водных объектов. Однако наблюдение ведется только за крупными водоемами и не охватывает подавляющее большинство малых рек, озер и прудов. Между тем ценность малых водоемов чрезвычайно высока. Исчезновение таких объектов значительно обедняет биоразнообразие любого природного комплекса.

В настоящее время систематические наблюдения за малыми водоемами в рамках государственного мониторинга не проводятся. Но эти водоемы могут и должны стать объектами общественного экологического мониторинга.

Для проведения комплексной оценки экологического состояния водоема необходимо их рекогносцировочное обследование. Целью нашей работы являласьразработка устройства для такого обследования состояния малых водоемов.

Поэтому в нашей проектной работе была сделана попытка показать возможность использования современных робтотехнических конструкторов для организации системы общественного мониторинга малых водоемов страны

Цель:

Создать модель роботизированного транспортного средства для использования его на водоемах малой глубины в целях сбора мусора, измерения различных физико-химических параметров, забора проб воды и придонных отложений, подкормки рыбы.

Залачи:

- 1. Добиться максимальной автономности функционирования данного устройства.
- 2. Создать дружественный интерфейс взаимодействия устройства с пользователем.
- 3. Разработать конструкцию устройства, позволяющую в кратчайшие сроки и с минимальной трудоемкостью решать различные задачи.
 - 4. Обеспечить минимальную стоимость устройства и его эксплуатации.

Актуальность

Для проведения различных исследований и работ на водоемах необходимо наличие плавательного средства, лодки, катера и т.д., которые требуют либо средства транспортировки (прицеп) либо занимают достаточно много времени для подготовки (надувная лодка). Мы предлагаем для проведения такого рода работ автономное роботизированное устройство, которое без каких-либо затруднений помещается в любой автомобиль или в случае необходимости может легко разобрано и переноситься в рюкзаке.

назначение устройства

Автономное роботизированное многофункциональное модульное транспортного средство на основе робототехнического комплекта **LEGO MINDSTORMS Education EV3** предназначено для:

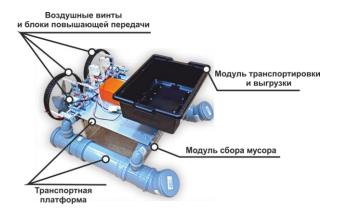
- 1. Для сбора плавающего мусора на поверхности водоема.
- 2. Для доставки и выгрузки в различные места водоема различных грузов (корма, химикатов, наблюдательных буев и т.д.).
- 3. Измерения различных физико-химических параметров: температуры, растворенного кислорода, уровня РН и т.д.
- 4. Забора проб воды с поверхности и определенной глубины, образцов придонных отложений и т.д.

Также созданная нами модель может быть легко адаптирована под различные другие цели и задачи, возникающие в различных сферах жизнедеятельности человека.

состав устройства

- 1. Робототехнический комплект LEGO MINDSTORMS Education EV3.
 - 1.1. Четыре больших мотора.
 - 1.2. Два воздушных пропеллера.
 - 1.3. Микрокомпьютер EV3.
 - 1.4. Гироскопический датчик.
 - 1.5. Соединительные модули и элементы.
- 2. Сантехнические трубы.
- 3. Устройство электропитания на основе Li-Po аккумулятора 11,1В и DC-DC преобразователя XL6019.
- 4. Датчик температуры LM35.
- 5. Устройство согласования датчика температуры LM35 с микрокомпьютером EV3.
- 6. Датчики лаборатории Vernier.
- 7. Батометр горизонтальный (батометр Ван-Дорна) собственной конструкции.
- 8. Синий и красный мигающие светодиоды.
- 9. Программное обеспечение LEGO® MINDSTORMS® Education EV3
- 10. Программа обеспечения автоматизированной работы.

ОПИСАНИЕ УСТРОЙСТВА


Основой данного устройства являются детали робототехнического комплекта **LEGO MINDSTORMS Education EV3**, а также дополнительные датчики, приспособления и конструкции изготовленные на 3D-принтере.

В основу данного автономного роботизированного плавающего устройства положен модульный принцип построения.

Основные модули:

- 1. Транспортная платформа.
- 2. Модуль сбора плавающего мусора.
- 3. Модуль транспортировки и выгрузки корма, химикатов, различных грузов и т.д.
- 4. Модуль измерения различных физико-химических параметров.
- 5. Модуль забора проб воды и донных отложений.

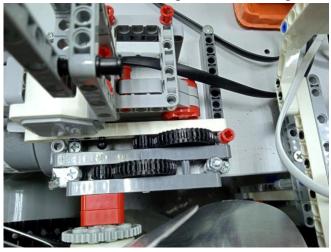
Данное устройство может быть дополнено другими модулями по мере необходимости.

Транспортная платформа

В качестве плавающей платформы устройства была создана конструкция из сантехнических труб диаметром 110 и 50 мм и различных фитингов к ним. Сверху к ним прикреплена площадка из композитного материала.

Данная плавающая платформ реализована по схеме катамарана, которая обеспечивает наибольшую устойчивость на воде в любых условиях.

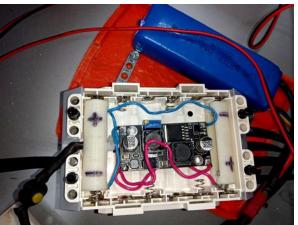
Преимущества использования данных материалов заключаются в простоте монтажа и легкости обеспечения герметичности всей конструкции.


Также к преимуществам можно отнести малый вес, высокую прочность и простоту сборки разборки в случае пешей транспортировки.

Движитель

В качестве движителя платформы были выбраны воздушные винты. Данный выбор обусловлен в первую очередь характером преимущественных мест эксплуатации устройства - озера и пруды, которые характеризуются малой глубиной и наличием большого числа различных подводных препятствий: водорослей, коряг и др. Также отсутствие гребного винта гарантирует отсутствие влияния на взятие проб воды и измерение химико-физических параметров.

Для вращения воздушных винтов используются большие моторы Lego EV3 и сконструированный нами двухступенчатая повышающая передача на шестеренок Lego EV3.



Передаточное число данной зубчатой передачи составляет 1:9.

Исходя из максимального числа оборотов больших моторов Lego EV3 в 160-170 об/мин, скорость вращения воздушных винтов без учета потерь должны составить 1440-1530 об/мин.

Два воздушных винта необходимы для управления маневрированием платформы. Использование двух воздушных винтов обеспечивает большую маневренность и простоту конструкции, а также больший воздушный поток.

Устройство электропитания

Электропитание микропроцессорного блока Lego EV3 обеспечивается использованием Li-Po аккумулятора 11,1B емкостью 3000 мАч и универсальным DC-DC преобразователя XL6019. Для подключения к контактам питания блока используются адаптеры гальванических элементов АА, смоделированные в 3D-редакторе и распечатанные на 3D-принтере.

Универсальный DC-DC преобразователя XL6019 обеспечивает:

Входное напряжение: 3 - 40 В Выходное напряжение: 5 - 45 В Выходной ток нагрузки: 5 А

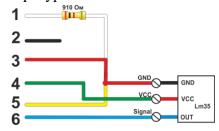
В нашем устройстве выходное напряжение отрегулировано на величину 9В, как и стандартное питание Lego EV3.

Использование аккумулятора большей емкости обеспечивает большее время автономной работы и простоту замены, а использование преобразователя обеспечивает стабильность напряжения электропитания независимо от степени разряда аккумулятора до определенных пределов.

Модуль сбора плавающего мусора.

Модуль сбора плавающего мусора представляет собой короб из металлической оцинкованной сетки, прикрепляемый на съемных элементах к транспортной платформе. В передней части короба сетка отсутствует для забора плавающего мусора при движении платформы.

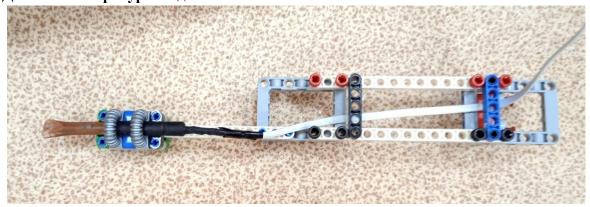
Устройство согласования датчика температуры LM35 с микрокомпьютером EV3


Устройство согласования предназначено для подключения аналогового датчика температуры LM35 к портам сенсоров микрокомпьютера EV3.

Назначение контактов разъемов «1-4» Lego Mindstorms EV3:

Номер контакта	Цвет провода	Имя	Назначение
1		AN	Аналоговый вход/ Питание 9 В
2		GND	Общий (земля)
3		GND	Общий (земля)
4		4.3 V Power	Питание 4,3 В
5		DIGAI0	Цифровой вход 0. I2C Clock (SCL), RS-485 B
6		DIGIA1	Цифровой вход 1. I2C Data (SDA), RS-485 A

При этом следует учитывать что контакт №1 используется для подключения датчиков NXT, а контакт №6 для подключения аналоговых датчиков EV3.


Схема подключения датчика температуры LM35:

Сопротивление в 910 Ом, подключенное согласно схеме сообщает контроллеру, что данный порт необходимо переключить в режим аналогового входа.

В режиме измерения температуры воды блок записывает необработанные значения датчика в собственную память. И по прибытию к оператору данные выгружаются на компьютер (планшет или ноутбук) и обрабатываются с помощью формулы полученной при калибровке датчика и аппроксимации данных.

Датчик температуры воды

Для измерения температуры воды устройством используется самостоятельно изготовленная конструкция, обеспечивающая герметичность датчика LM35 и места пайки.

В основе корпуса датчик - медная трубка обжатая с одной стороны и облуженная. С другой стороны надеты несколько термоусадочных трубок на каждый провод в отдельности, общая на все провода и внутрь медной трубки, и общая на провод и медную трубку.

Датчик Vernier растворенного кислорода в воде

Датчик Vernier растворенного кислорода в воде, входит в комплект школьной лаборато-

рии по химии и биологии Vernier. Он может быть использован для проведения широкого спектра исследований по определению изменения уровня растворенного кислорода.

- Встроенная компенсация температуры позволяет калибровать в лаборатории, затем проводить измерения на улице без необходимости повторной калибровки.
- Одноразовые колпачки с предварительно вставленными мембранами позволяют быстро и удобно менять мембраны.
- Калибровка в единицах, которые вы выберете: %, мг/л или ppm

Технические характеристики

Диапазон: от 0 до 15 мг/л (или ppm)

Точность: ± 0.2 мг/л

Время ответа: 95% конечного чтения за 30 секунд, 98% за 45 секунд

Типичное разрешение: 0,014 мг/л

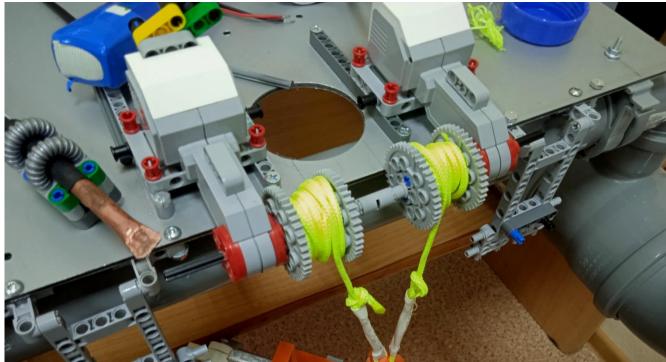
Компенсация температуры автоматическая 5-35 ° C Компенсация солености: согласно инструкций

Минимальный поток образца: 20 см/сек

Для подключения Lego EV3 используется специальный блок сопряжения

Батометр горизонтальный (батометр Ван-Дорна)

Батометр предназначен для отбора проб воды с заданной глубины водоемов . При погружении клапаны прибора находятся в открытом состоянии.


Конструкция используемого батометра создана на основе сантехнических труб диаметром 50мм и их фитингов, а так же самостоятельно разработанных и изготовленных 3D -деталей.

При использовании батометра человеком закрытие клапанов батометра на нужной глубине производится при помощи посыльного груза, который опускаясь открывает запорное устройство клапанов. В нашем устройстве применен иной принцип закрытия клапанов. Как видно из фото, для опускания батометра используется один трос и мотор, для привода запорного устройства используется второй трос и мотор.

Порядок забора воды с определенной глубины:

- 1. Взвести клапана вручную.
- 2. Отправить платформу в нужную точку.
- 3. Ослабить трос привода запора клапанов.
- 4. Опустить батометр на заданную глубину.
- 5. Поднимать батометр за трос привода запора клапанов, вследствие чего запорное устройство выйдет из зацепления с клапанами и емкость батометра останется то с водой, взятой на заданной глубине.

Модуль забора проб воды с заданной глубины.

Модуль забора воды с заданной глубины включает в себя батометр и два барабана со шнурами установленные двигатели платформы. Правый мотор на фото предназначен для спуска заборного устройства, а левый для подъема запорного клапана и самого устройства.

Спуск на заданную глубину определяется из расчета 1 оборот барабана — 10см шнура вниз.

Программное обеспечение

Для обеспечения работоспособности данного автоматизированного устройства разработана программа управления (Программное обеспечение LEGO $^{\text{®}}$ MINDSTORMS $^{\text{®}}$ Education EV3), которое обеспечивает:

- 1. Дистанционное управление устройством для сбора плавающего мусора, транспортировки и выгрузки корма, химикатов и реактивов.
- 2. Автоматизированный режим сбора плавающего мусора.
- 3. Измерение различных физико-химических параметров и запись их в память блока для дальнейшей выгрузки и обработки в стационарных условиях.
- 4. Забор проб воды на поверхности и на заданной глубине.

Автоматизированный режим сбора плавающего мусора.

Для движения в автоматизированном режиме используется гироскопический датчик и второй блок Lego EV3.

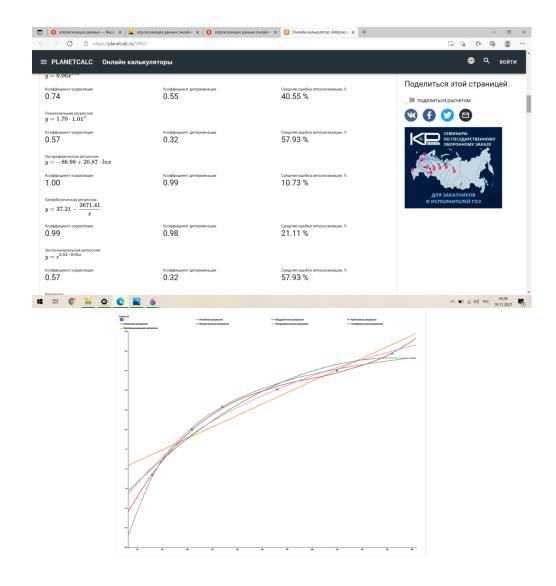
Гироскопический датчик обеспечивает прямолинейность движения относительно берега.

Второй блок передает команду на поворот, после нажатия кнопки оператором при приближении к берегу.

Измерение различных физико-химических параметров.

На данный момент реализовано измерение двух параметров: температуры и насыщения кислородом воды у поверхности водоема.

Данные как было указано выше, записываются в память блока, а затем выгружаются на компьютер для дальнейшей обработки.

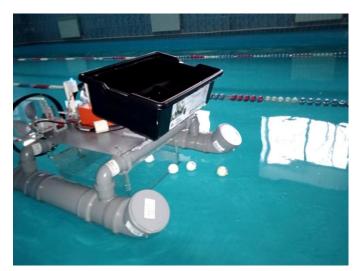

Данные с датчика Vernier растворенного кислорода не нуждаются в дальнейшей обработке и выгружаются непосредственно в мг/л.

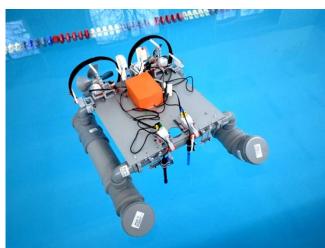
Показания датчика температуры выгружаются в условных единицах и требуют дальнейшего перевода в градусы Цельсия.

Перевод осуществляется по формуле полученной в результате калибровки датчика температуры. В ходе калибровки использовался эталонный электронный термометр и емкость с водой различной температуры. В результате была получена следующая таблица значений:

Необработанное	Эталонный
значение	датчик C°
72	-1,5
104	10
128	15,8
172	20,2
220	25
264	29,3

Была проведена с использованием онлайн-сервисов, аппроксимация данных и получена формула для перевода значений:




ИСПЫТАНИЯ

Испытания устройства проходили в бассейне МБОУ Лицей №73, в результате испытаний были отработаны следующие действие:

- 1. Маневрирование по поверхности воды.
- 2. Имитация выгрузки корма (шарики для малого тенниса).
- 3. Сбор мусора в режиме дистанционного управления.
- 4. Автоматическое движение вдоль борта по гироскопическому датчику.
- 5. Измерение параметров и выгрузка данных.
- 6. Взятия проб воды.

Испытания прошли успешно, показали необходимость дальнейшей работы над совершенствованием программы автоматического управления движением и получения устойчивых навыков управления платформой в ручном режиме.

ЗАКЛЮЧЕНИЕ

Разработанная модель автономного роботизированного многофункционального модульного транспортного средства по результатам испытаний способно обеспечить выполнение поставленных перед ним задач. Определены следующие этапы работы:

- 1. Проведение испытаний в естественных условиях.
- 2. Создание аналогичного транспортного средства на основе платформы Arduino с использованием средств спутниковой навигации и полноценных систем связи и управления.

Консультации с представителями исследователей окружающей среды и защиты природы показали большую заинтересованность в использовании нашего устройства.

ЛИТЕРАТУРА

- 1. http://karandashsamodelkin.blogspot.com/2016/05/lego-mindstorms-ev3.html
- 2. https://www.youtube.com/watch?v=C3CG5JNmRBI
- 3. http://smartep.ru/index.php?page=lego_mindstorms_hardware
- 4. http://karandashsamodelkin.blogspot.com/2016/05/lego-mindstorms-ev3.html
- 5. https://www.philohome.com/nxtspotlight/spotlight.htm
- 6. http://eco-project.org/data/upload/Razrabotka_ustroystva_dlya_monitoringa_sostoyaniya_vodoemov.-20130124021714.pdf

РЕЦЕНЗИЯ

На проект

Модель автономного роботизированного многофункционального модульного транспортного средства, для изучения и обслуживания водоемов малой глубины на основе робототехнического комплекта Lego **Mindstorms EV3**

Вышеназванная работа демонстрирует в первую очередь огромное стремление учащихся, проделавших данную работу, к изучению таких науки как физика, информатика, технология и претворению полученных знаний в практическую плоскость повседневной жизни.

Авторы проекта поставили перед собой цель - создать модель роботизированного транспортного средства для использования его на водоемах малой глубины в целях сбора мусора, измерения различных физико-химических параметров, забора проб воды и придонных отложений, подкормки рыбы.

К достоинствам проекта можно отнести:

- 1. В проекте использованы воздушные винты, что позволяет катамарану беспрепятственно перемещаться по водоемам любой, TOM числе сверхмалой, глубины.
- 2. Применены удачные технические решения для задач сбора предметов с поверхности водоема, забора проб воды с заданной глубины, измерения температуры забортной воды.
- 3. Проект креативен, эстетичен, имеет очевидные области практического применения.

Считаю, что проведенная работа заслуживает высокой оценки с точки зрения актуальности выбранной темы и ее реализации на практике.

ГБУДОПО «Центр развития творчества Петамо С.Ю. Пеганов детей и юношества»